Altered de novo lipogenesis contributes to low adipose stores in cystic fibrosis mice.
نویسندگان
چکیده
Cystic fibrosis (CF) mouse models exhibit exocrine pancreatic function, yet they do not develop adipose stores to the levels of non-CF mice. CF mice homozygous for the Cftr mutation (F508del) at 3 wk (postweaning) and 6 wk (young adult) of age had markedly less adipose tissue than non-CF mice. Food intake was markedly lower in 3-wk-old CF mice but normalized by 6 wk of age. Both 3- and 6-wk-old mice had dietary lipid absorption and fecal lipid excretion comparable to non-CF mice. Hepatic de novo lipogenesis (DNL), determined by (2)H incorporation, was reduced in CF mice. At 3 wk, F508del mice had significantly decreased DNL of palmitate and stearate, by 83% and 80%, respectively. By 6 wk, DNL rates in non-CF mice remained unchanged compared with 3-wk-old mice, while DNL rates of F508del mice were still reduced, by 33% and 40%, respectively. Adipose tissue fatty acid (FA) profiles were comparable in CF and non-CF mice, indicating that adipose differences are quantitative, not qualitative. A correspondingly lower content of (2)H-labeled FA was found in CF adipose tissue, consistent with reduced deposition of newly made hepatic triglycerides and/or decreased adipose tissue lipogenesis. Hepatic transcriptome analysis revealed lower mRNA expression from several genes involved in FA biosynthesis, suggesting downregulation of this pathway as a mechanism for the reduced lipogenesis. These novel data provide a model for altered lipid metabolism in CF, independent of malabsorption, and may partly explain the inability of pancreatic enzyme replacement therapy to completely restore normal body mass to CF patients.
منابع مشابه
نقش ژن SHIP2 در لیپوژنز القایی توسط اولئات
Introduction: Dyslipidemia is one of the key risk factors for cardiovascular disease in type 2 diabetes (T2D). The dyslipidemia is characterized by increased plasma concentration of triglycerides (TG), reduced concentration of high density lipoprotein cholesterol (HDL-C) and an increased concentration of small dense low density lipoprotein (LDL) cholesterol. Evidence from bo...
متن کاملReversing diet-induced metabolic dysregulation by diet switching leads to altered hepatic de novo lipogenesis and glycerolipid synthesis
In humans, low-energy diets rapidly reduce hepatic fat and improve/normalise glycemic control. Due to difficulties in obtaining human liver, little is known about changes to the lipid species and pathway fluxes that occur under these conditions. Using a combination of stable isotope, and targeted metabolomic approaches we investigated the acute (7-9 days) hepatic effects of switching high-fat h...
متن کاملChanges in LXR signaling influence early-pregnancy lipogenesis and protect against dysregulated fetoplacental lipid homeostasis
Human pregnancy is associated with enhanced de novo lipogenesis in the early stages followed by hyperlipidemia during advanced gestation. Liver X receptors (LXRs) are oxysterol-activated nuclear receptors that stimulate de novo lipogenesis and also promote the efflux of cholesterol from extrahepatic tissues followed by its transport back to the liver for biliary excretion. Although LXR is recog...
متن کاملHepatic oleate regulates adipose tissue lipogenesis and fatty acid oxidation.
Hepatic steatosis is associated with detrimental metabolic phenotypes including enhanced risk for diabetes. Stearoyl-CoA desaturases (SCDs) catalyze the synthesis of MUFAs. In mice, genetic ablation of SCDs reduces hepatic de novo lipogenesis (DNL) and protects against diet-induced hepatic steatosis and adiposity. To understand the mechanism by which hepatic MUFA production influences adipose t...
متن کاملPartial Inhibition of Adipose Tissue Lipolysis Improves Glucose Metabolism and Insulin Sensitivity Without Alteration of Fat Mass
When energy is needed, white adipose tissue (WAT) provides fatty acids (FAs) for use in peripheral tissues via stimulation of fat cell lipolysis. FAs have been postulated to play a critical role in the development of obesity-induced insulin resistance, a major risk factor for diabetes and cardiovascular disease. However, whether and how chronic inhibition of fat mobilization from WAT modulates ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Gastrointestinal and liver physiology
دوره 303 4 شماره
صفحات -
تاریخ انتشار 2012